Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Sci Rep ; 13(1): 6497, 2023 04 20.
Article in English | MEDLINE | ID: covidwho-2296927

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 infection is highly heterogeneous, ranging from asymptomatic to severe and fatal cases. COVID-19 has been characterized by an increase of serum pro-inflammatory cytokine levels which seems to be associated with fatal cases. By contrast, the role of pro-resolving lipid mediators (SPMs), involved in the attenuation of inflammatory responses, has been scarcely investigated, so further studies are needed to understand SPMs metabolism in COVID-19 and other infectious diseases. Our aim was to analyse the lipid mediator metabolome, quantifying pro- and anti-inflammatory serum bioactive lipids by LC-MS/MS in 7 non-infected subjects and 24 COVID-19 patients divided into mild, moderate, and severe groups according to the pulmonary involvement, to better understand the disease outcome and the severity of the pulmonary manifestations. Statistical analysis was performed with the R programming language (R Foundation for Statistical Computing, Vienna, Austria). All COVID-19 patients had increased levels of Prostaglandin E2. Severe patients showed a significant increase versus controls, mild- and moderate-affected patients, expressed as median (interquartile range), in resolvin E1 [112.6 (502.7) vs 0.0 (0.0) pg/ml in the other groups], as well as in maresin 2 [14.5 (7.0) vs 8.1 (4.2), 5.5 (4.3), and 3.0 (4.0) pg/ml, respectively]. Moreover, 14-hydroxy docosahexaenoic acid (14-HDHA) levels were also increased in severe vs control and mild-affected patients [24.7 (38.2) vs 2.4 (2.2) and 3.7 (6.4) ng/mL, respectively]. Resolvin D5 was also significantly elevated in both moderate [15.0 (22.4) pg/ml] and severe patients [24.0 (24.1) pg/ml] versus controls [0.0 (0.0) pg/ml]. These results were confirmed by sparse partial least squares discriminant analysis which highlighted the contribution of these mediators to the separation between each of the groups. In conclusion, the potent inflammatory response to SARS-CoV-2 infection involves not only pro- but also anti-inflammatory lipid mediators that can be quantified in easily accessible serum samples, suggesting the need to perform future research on their generation pathways that will help us to discover new therapeutic targets.


Subject(s)
COVID-19 , Humans , Pilot Projects , Chromatography, Liquid , SARS-CoV-2/metabolism , Tandem Mass Spectrometry , Lung/metabolism , Eicosanoids/metabolism , Anti-Inflammatory Agents , Patient Acuity
2.
Biochem Pharmacol ; 209: 115437, 2023 03.
Article in English | MEDLINE | ID: covidwho-2209860

ABSTRACT

Fatal "cytokine storms (CS)" observed in critically ill COVID-19 patients are consequences of dysregulated host immune system and over-exuberant inflammatory response. Acute respiratory distress syndrome (ARDS), multi-system organ failure, and eventual death are distinctive symptoms, attributed to higher morbidity and mortality rates among these patients. Consequent efforts to save critical COVID-19 patients via the usage of several novel therapeutic options are put in force. Strategically, drugs being used in such patients are dexamethasone, remdesivir, hydroxychloroquine, etc. along with the approved vaccines. Moreover, it is certain that activation of the resolution process is important for the prevention of chronic diseases. Until recently Inflammation resolution was considered a passive process, rather it's an active biochemical process that can be achieved by the use of specialized pro-resolving mediators (SPMs). These endogenous mediators are an array of atypical lipid metabolites that include Resolvins, lipoxins, maresins, protectins, considered as immunoresolvents, but their role in COVID-19 is ambiguous. Recent evidence from studies such as the randomized clinical trial, in which omega 3 fatty acid was used as supplement to resolve inflammation in COVID-19, suggests that direct supplementation of SPMs or the use of synthetic SPM mimetics (which are still being explored) could enhance the process of resolution by regulating the aberrant inflammatory process and can be useful in pain relief and tissue remodeling. Here we discussed the biosynthesis of SPMs, & their mechanistic pathways contributing to inflammation resolution along with sequence of events leading to CS in COVID-19, with a focus on therapeutic potential of SPMs.


Subject(s)
COVID-19 , Fatty Acids, Omega-3 , Humans , SARS-CoV-2/metabolism , Cytokine Release Syndrome/drug therapy , Inflammation/metabolism , Fatty Acids, Omega-3/metabolism , Eicosanoids , Inflammation Mediators/metabolism , Docosahexaenoic Acids/therapeutic use , Randomized Controlled Trials as Topic
3.
J Immunol ; 210(3): 221-227, 2023 02 01.
Article in English | MEDLINE | ID: covidwho-2201461

ABSTRACT

Leukotrienes (LTs) are lipid mediators derived from the 5-lipoxygenase pathway of arachidonate metabolism. Though best known for their role in asthma, they have broad actions that touch on virtually every aspect of mammalian biology. In a Brief Review published in the journal in 2005, we presented the existing evidence supporting a role for LTs in host defense. In this updated Brief Review, we focus on selected advances since then. We detail new insights into mechanisms and regulation of LT biosynthesis; the protective roles of LTs in the host response to diverse classes of pathogens, with an emphasis on viruses, including SARS-CoV-2; the phagocyte signal transduction mechanisms by which LTs exert their antimicrobial actions; the capacity for overexuberant LT production to promote tissue damage; and roles of LTs in the noninfectious immune-relevant conditions neuroinflammation and cancer.


Subject(s)
COVID-19 , Animals , Humans , Arachidonate 5-Lipoxygenase/metabolism , Eicosanoids , Immunity, Innate , Leukotrienes , Mammals/metabolism , SARS-CoV-2/metabolism
4.
Free Radic Biol Med ; 194: 308-315, 2023 01.
Article in English | MEDLINE | ID: covidwho-2149742

ABSTRACT

Proinflammatory bioactive lipid mediators and oxidative stress are increased in coronavirus disease 2019 (COVID-19). The randomized controlled single-blind trial COVID-Omega-F showed that intravenous omega-3 polyunsaturated fatty acids (n-3 PUFA) shifted the plasma lipid signature of COVID-19 towards increased proresolving precursor levels and decreased leukotoxin diols, associated with a beneficial immunodulatory response. The present study aimed to determine the effects of n-3 PUFA on the urinary oxylipidome and oxidative stress in COVID-19. From the COVID-Omega-F trial, 20 patients hospitalized for COVID-19 had available serial urinary samples collected at baseline, after 24-48 h, and after completing 5 days treatment with one daily intravenous infusion (2 mL/kg) of either placebo (NaCl; n = 10) or a lipid emulsion containing 10 g of n-3 PUFA per 100 mL (n = 10). Urinary eicosanoids and isoprostanes were analyzed by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Erythrocytes obtained at the different time-points from n = 10 patients (n = 5 placebo and n = 5 n-3 PUFA) were used for determination of reactive oxygen species. Intravenous n-3 PUFA emulsion administration altered eicosanoid metabolites towards decreased levels for mediators of inflammation and thrombosis, and increased levels of the endothelial function mediator prostacyclin. Furthermore, non-enzymatic metabolism was skewed towards n-3 PUFA-derived metabolites with potential anti-inflammatory and pro-resolving effects. The oxidative stress marker 15-F2t-isoprostane was significantly lower in patients receiving n-3 PUFA treatment, who also exhibited significantly decreased erythrocyte oxidative stress compared with placebo-treated patients. These findings point to additional beneficial effects of intravenous n-3 PUFA emulsion treatment through a beneficial oxylipin profile and decreased oxidative stress in COVID-19.


Subject(s)
COVID-19 , Fatty Acids, Omega-3 , Humans , Emulsions , Chromatography, Liquid , Single-Blind Method , Tandem Mass Spectrometry , Eicosanoids/metabolism , Oxidative Stress
5.
Int J Mol Sci ; 23(19)2022 Oct 05.
Article in English | MEDLINE | ID: covidwho-2066137

ABSTRACT

As a result of SARS-CoV-2 infection, inflammation develops, which promotes oxidative stress, leading to modification of phospholipid metabolism. Therefore, the aim of this study is to compare the effects of COVID-19 on the levels of phospholipid and free polyunsaturated fatty acids (PUFAs) and their metabolites produced in response to reactions with reactive oxygen species (ROS) and enzymes (cyclooxygenases-(COXs) and lipoxygenase-(LOX)) in the plasma of patients who either recovered or passed away within a week of hospitalization. In the plasma of COVID-19 patients, especially of the survivors, the actions of ROS and phospholipase A2 (PLA2) cause a decrease in phospholipid fatty acids level and an increase in free fatty acids (especially arachidonic acid) despite increased COXs and LOX activity. This is accompanied by an increased level in lipid peroxidation products (malondialdehyde and 8-isoprostaglandin F2α) and lipid mediators generated by enzymes. There is also an increase in eicosanoids, both pro-inflammatory as follows: thromboxane B2 and prostaglandin E2, and anti-inflammatory as follows: 15-deoxy-Δ-12,14-prostaglandin J2 and 12-hydroxyeicosatetraenoic acid, as well as endocannabinoids (anandamide-(AEA) and 2-arachidonylglycerol-(2-AG)) observed in the plasma of patients who recovered. Moreover, the expression of tumor necrosis factor α and interleukins (IL-6 and IL-10) is increased in patients who recovered. However, in the group of patients who died, elevated levels of N-oleoylethanolamine and N-palmitoylethanolamine are found. Since lipid mediators may have different functions depending on the onset of pathophysiological processes, a stronger pro-inflammatory response in patients who have recovered may be the result of the defensive response to SARS-CoV-2 in survivors associated with specific changes in the phospholipid metabolism, which could also be considered a prognostic factor.


Subject(s)
COVID-19 , Endocannabinoids , Arachidonic Acids/metabolism , Dinoprostone/metabolism , Eicosanoids/metabolism , Endocannabinoids/metabolism , Fatty Acids, Nonesterified , Hospitalization , Hospitals , Humans , Hydroxyeicosatetraenoic Acids , Interleukin-10/metabolism , Interleukin-6/metabolism , Lipid Peroxidation , Lipoxygenase/metabolism , Malondialdehyde , Phospholipases A2/metabolism , Phospholipids/metabolism , Prostaglandin-Endoperoxide Synthases/metabolism , Reactive Oxygen Species/metabolism , SARS-CoV-2 , Survivors , Thromboxane B2 , Tumor Necrosis Factor-alpha/metabolism
6.
Biochem Pharmacol ; 204: 115210, 2022 10.
Article in English | MEDLINE | ID: covidwho-1982612

ABSTRACT

In this review it is attempted to summarize current studies about formation of eicosanoids and other oxylipins in different human macrophages. There are several reports on M1 and M2 cells, also other phenotypes have been described. The eicosanoids formed in the largest amounts are the COX products TxB2 and PGE2. Thus shortlived bioactive TxA2 is a dominating product both in M1- and in M2-lineages, one exception seems to be MGM-CSF, TGFß cells. 5-LOX products are produced in both M1 and M2 macrophages, as well as in not fully polarized cells of both lineages. MM-CSF as well as M2 macrophages produced LTC4 more readily compared to M1 lineage cells. In MGM-CSF, TGFß cells LTB4 is a major eicosanoid, in line with high expression of LTA4 hydrolase. Recent reports described increased formation of leukotrienes in macrophages subjected to trained immunity with inflammatory transcriptional reprogramming. Also in macrophages derived from monocytes collected from post-COVID-19 patients. 15-LOX-1 is strongly upregulated in CD206+ M2 cells (M2a), differentiated in presence of IL-4. These macrophages also express 15-LOX-2. In incubations with pathogenic E. coli as well as other stimuli 15(S)-HETE and 17(S)-HDHA were major oxylipins formed. Also, the SPM precursor 5,15-diHETE and the SPM RvD5 were produced in considerable amounts, while other SPMs were less abundant. In M2 macrophages incubated with E. coli or S. aureus the cytosolic 15-LOX-1 enzyme accumulated to punctuate structures in a Ca2+ dependent manner with a relatively slow time course, leading to formation of mediators from endogenous substrate. Chalcones, flavone-like anti-inflammatory natural products, induced translocation of 15-LOX-1 in M2 cells, with high formation of 15-LOX derived oxylipins.


Subject(s)
Biological Products , Eicosanoids , Macrophages , Oxylipins , Arachidonate 5-Lipoxygenase/metabolism , Biological Products/metabolism , COVID-19 , Chalcones , Cyclooxygenase 2/metabolism , Eicosanoids/metabolism , Escherichia coli/metabolism , Flavones , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Humans , Hydrolases/metabolism , Hydroxyeicosatetraenoic Acids/metabolism , Interleukin-4/metabolism , Leukotrienes , Macrophage Colony-Stimulating Factor , Macrophages/metabolism , Oxylipins/metabolism , Prostaglandins E/metabolism , Scavenger Receptors, Class E/metabolism , Staphylococcus aureus , Transforming Growth Factor beta/metabolism
7.
Nature ; 605(7908): 146-151, 2022 05.
Article in English | MEDLINE | ID: covidwho-1815561

ABSTRACT

Coronavirus disease 2019 (COVID-19) is especially severe in aged populations1. Vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are highly effective, but vaccine efficacy is partly compromised by the emergence of SARS-CoV-2 variants with enhanced transmissibility2. The emergence of these variants emphasizes the need for further development of anti-SARS-CoV-2 therapies, especially for aged populations. Here we describe the isolation of highly virulent mouse-adapted viruses and use them to test a new therapeutic drug in infected aged animals. Many of the alterations observed in SARS-CoV-2 during mouse adaptation (positions 417, 484, 493, 498 and 501 of the spike protein) also arise in humans in variants of concern2. Their appearance during mouse adaptation indicates that immune pressure is not required for selection. For murine SARS, for which severity is also age dependent, elevated levels of an eicosanoid (prostaglandin D2 (PGD2)) and a phospholipase (phospholipase A2 group 2D (PLA2G2D)) contributed to poor outcomes in aged mice3,4. mRNA expression of PLA2G2D and prostaglandin D2 receptor (PTGDR), and production of PGD2 also increase with ageing and after SARS-CoV-2 infection in dendritic cells derived from human peripheral blood mononuclear cells. Using our mouse-adapted SARS-CoV-2, we show that middle-aged mice lacking expression of PTGDR or PLA2G2D are protected from severe disease. Furthermore, treatment with a PTGDR antagonist, asapiprant, protected aged mice from lethal infection. PTGDR antagonism is one of the first interventions in SARS-CoV-2-infected animals that specifically protects aged animals, suggesting that the PLA2G2D-PGD2/PTGDR pathway is a useful target for therapeutic interventions.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Eicosanoids , Leukocytes, Mononuclear , Mice , Organic Chemicals , Oxazoles , Piperazines , Polyesters , Prostaglandins , Spike Glycoprotein, Coronavirus , Sulfonamides
8.
Lab Anim (NY) ; 51(5): 130, 2022 05.
Article in English | MEDLINE | ID: covidwho-1805658
9.
J Infect Dis ; 225(12): 2142-2154, 2022 06 15.
Article in English | MEDLINE | ID: covidwho-1740900

ABSTRACT

BACKGROUND: Specialized proresolution molecules (SPMs) halt the transition to chronic pathogenic inflammation. We aimed to quantify serum levels of pro- and anti-inflammatory bioactive lipids in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) patients, and to identify potential relationships with innate responses and clinical outcome. METHODS: Serum from 50 hospital admitted inpatients (22 female, 28 male) with confirmed symptomatic SARS-CoV-2 infection and 94 age- and sex-matched controls collected prior to the pandemic (SARS-CoV-2 negative), were processed for quantification of bioactive lipids and anti-nucleocapsid and anti-spike quantitative binding assays. RESULTS: SARS-CoV-2 serum had significantly higher concentrations of omega-6-derived proinflammatory lipids and omega-6- and omega-3-derived SPMs, compared to the age- and sex-matched SARS-CoV-2-negative group, which were not markedly altered by age or sex. There were significant positive correlations between SPMs, proinflammatory bioactive lipids, and anti-spike antibody binding. Levels of some SPMs were significantly higher in patients with an anti-spike antibody value >0.5. Levels of linoleic acid and 5,6-dihydroxy-8Z,11Z,14Z-eicosatrienoic acid were significantly lower in SARS-CoV-2 patients who died. CONCLUSIONS: SARS-CoV-2 infection was associated with increased levels of SPMs and other pro- and anti-inflammatory bioactive lipids, supporting the future investigation of the underlying enzymatic pathways, which may inform the development of novel treatments.


Subject(s)
COVID-19 , SARS-CoV-2 , Adaptive Immunity , Antibodies, Viral , Eicosanoids , Female , Humans , Male , Spike Glycoprotein, Coronavirus
11.
Allergy ; 77(8): 2337-2354, 2022 08.
Article in English | MEDLINE | ID: covidwho-1691634

ABSTRACT

Non-steroidal anti-inflammatory drugs (NSAIDs) and other eicosanoid pathway modifiers are among the most ubiquitously used medications in the general population. Their broad anti-inflammatory, antipyretic, and analgesic effects are applied against symptoms of respiratory infections, including SARS-CoV-2, as well as in other acute and chronic inflammatory diseases that often coexist with allergy and asthma. However, the current pandemic of COVID-19 also revealed the gaps in our understanding of their mechanism of action, selectivity, and interactions not only during viral infections and inflammation, but also in asthma exacerbations, uncontrolled allergic inflammation, and NSAIDs-exacerbated respiratory disease (NERD). In this context, the consensus report summarizes currently available knowledge, novel discoveries, and controversies regarding the use of NSAIDs in COVID-19, and the role of NSAIDs in asthma and viral asthma exacerbations. We also describe here novel mechanisms of action of leukotriene receptor antagonists (LTRAs), outline how to predict responses to LTRA therapy and discuss a potential role of LTRA therapy in COVID-19 treatment. Moreover, we discuss interactions of novel T2 biologicals and other eicosanoid pathway modifiers on the horizon, such as prostaglandin D2 antagonists and cannabinoids, with eicosanoid pathways, in context of viral infections and exacerbations of asthma and allergic diseases. Finally, we identify and summarize the major knowledge gaps and unmet needs in current eicosanoid research.


Subject(s)
Asthma , COVID-19 Drug Treatment , Hypersensitivity , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Asthma/drug therapy , Consensus , Eicosanoids/metabolism , Humans , Hypersensitivity/drug therapy , Inflammation/drug therapy , SARS-CoV-2
12.
Prostaglandins Other Lipid Mediat ; 159: 106619, 2022 04.
Article in English | MEDLINE | ID: covidwho-1616705

ABSTRACT

Inflammation is an essential protective response against harmful stimuli, such as invading pathogens, damaged cells, or irritants. Physiological inflammation eliminates pathogens and promotes tissue repair and healing. Effective immune response in humans depends on a tightly regulated balance among inflammatory and anti-inflammatory mechanisms involving both innate and adaptive arms of the immune system. Excessive inflammation can become pathological and induce detrimental effects. If this process is not self-limited, an inappropriate remodeling of the tissues and organs can occur and lead to the onset of chronic degenerative diseases. A wide spectrum of infectious and non-infectious agents may activate the inflammation, via the release of mediators and cytokines by distinct subtypes of lymphocytes and macrophages. Several molecular mechanisms regulate the onset, progression, and resolution of inflammation. All these steps, even the termination of this process, are active and not passive events. In particular, a complex interplay exists between mediators (belonging to the group of Eicosanoids), which induce the beginning of inflammation, such as Prostaglandins (PGE2), Leukotrienes (LT), and thromboxane A2 (TXA2), and molecules which display a key role in counteracting this process and in promoting its proper resolution. The latter group of mediators includes: ω-6 arachidonic acid (AA)-derived metabolites, such as Lipoxins (LXs), ω -3 eicosapentaenoic acid (EPA)-derived mediators, such as E-series Resolvins (RvEs), and ω -3 docosahexaenoic (DHA)-derived mediators, such as D-series Resolvins (RvDs), Protectins (PDs) and Maresins (MaRs). Overall, these mediators are defined as specialized pro-resolving mediators (SPMs). Reduced synthesis of these molecules may lead to uncontrolled inflammation with possible harmful effects. ω-3 fatty acids are widely used in clinical practice as rather inexpensive, safe, readily available supplemental therapy. Taking advantage of this evidence, several researchers are suggesting that SPMs may have beneficial effects in the complementary treatment of patients with severe forms of SARS-CoV-2 related infection, to counteract the "cytokine storm" observed in these individuals. Well-designed and sized trials in patients suffering from COVID-19 with different degrees of severity are needed to investigate the real impact in the clinical practice of this promising therapeutic approach.


Subject(s)
COVID-19 , SARS-CoV-2 , Docosahexaenoic Acids/metabolism , Eicosanoids/metabolism , Humans , Inflammation/metabolism , Inflammation Mediators/metabolism , Micronutrients , Vitamins
13.
Pharmacol Ther ; 234: 108049, 2022 06.
Article in English | MEDLINE | ID: covidwho-1536989

ABSTRACT

Cytochrome P450 (CYP) enzymes are frequently referred to as the third pathway for the metabolism of arachidonic acid. While it is true that these enzymes generate arachidonic acid epoxides i.e. the epoxyeicosatrienoic acids (EETs), they are able to accept a wealth of ω-3 and ω-6 polyunsaturated fatty acids (PUFAs) to generate a large range of regio- and stereo-isomers with distinct biochemical properties and physiological actions. Probably the best studied are the EETs which have well documented effects on vascular reactivity and angiogenesis. CYP enzymes can also participate in crosstalk with other PUFA pathways and metabolize prostaglandin G2 and H2, which are the precursors of effector prostaglandins, to affect macrophage function and lymphangiogenesis. The activity of the PUFA epoxides is thought to be kept in check by the activity of epoxide hydrolases. However, rather than being inactive, the diols generated have been shown to regulate neutrophil activation, stem and progenitor cell proliferation and Notch signaling in addition to acting as exercise-induced lipokines. Excessive production of PUFA diols has also been implicated in pathologies such as severe respiratory distress syndromes, including COVID-19, and diabetic retinopathy. This review highlights some of the recent findings related to this pathway that affect angiogenesis and stem cell biology.


Subject(s)
COVID-19 , Epoxy Compounds , Arachidonic Acid/metabolism , Cytochrome P-450 Enzyme System/metabolism , Eicosanoids , Epoxy Compounds/metabolism , Epoxy Compounds/pharmacology , Fatty Acids , Fatty Acids, Unsaturated/metabolism , Humans , Neovascularization, Pathologic
14.
Eur Rev Med Pharmacol Sci ; 25(21): 6782-6796, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1524866

ABSTRACT

OBJECTIVE: This study aimed to evaluate the eicosanoid and pro resolutive parameters in SARS COVID-19 patients with the severe acute respiratory syndrome. PATIENTS AND METHODS: Fourteen male patients with an acute respiratory syndrome caused by SARS COVID-19 and four healthy controls were evaluated by measuring the following parameters in plasma: Polyunsaturated fatty acids: EPA, DHA, ARA, and DPA. Specialized Pro-resolving mediators (SPMs) (including monohydroxy-containing precursors 17-HDHA, 18-HEPE, 14-HDHA) resolvins, maresins, protectins, and lipoxins. The eicosanoids group included prostaglandins, thromboxanes, and leukotrienes. RESULTS: Plasma from COVID-19 patients presented higher amounts of pro-inflammatory and pro-thrombotic lipid mediators as compared to healthy subjects (65.7 pg/ml vs. 10.2 pg/ml), including thromboxane (2142.6 pg/ml vs. 10.4 pg/ml), and the ratio between total plasma pro-inflammatory mediators versus total SPM's was 13.2 to 0,4, respectively. CONCLUSIONS: A clear disbalance favoring the pro-inflammatory axis is described, showing the need to perform future clinical interventions in these patients using SPM's or monohydroxylated lipid mediators derivates from fatty acids.


Subject(s)
COVID-19/diagnosis , Eicosanoids/blood , Inflammation Mediators/blood , Acute Disease , Adult , COVID-19/pathology , COVID-19/virology , Case-Control Studies , Chromatography, High Pressure Liquid , Fatty Acids, Unsaturated/blood , Humans , Male , SARS-CoV-2/isolation & purification , Severity of Illness Index , Tandem Mass Spectrometry , Thromboxanes/blood
15.
Immunology ; 164(3): 541-554, 2021 11.
Article in English | MEDLINE | ID: covidwho-1488214

ABSTRACT

IL-33 and ATP are alarmins, which are released upon damage of cellular barriers or are actively secreted upon cell stress. Due to high-density expression of the IL-33 receptor T1/ST2 (IL-33R), and the ATP receptor P2X7, mast cells (MCs) are one of the first highly sensitive sentinels recognizing released IL-33 or ATP in damaged peripheral tissues. Whereas IL-33 induces the MyD88-dependent activation of the TAK1-IKK2-NF-κB signalling, ATP induces the Ca2+ -dependent activation of NFAT. Thereby, each signal alone only induces a moderate production of pro-inflammatory cytokines and lipid mediators (LMs). However, MCs, which simultaneously sense (co-sensing) IL-33 and ATP, display an enhanced and prolonged activation of the TAK1-IKK2-NF-κB signalling pathway. This resulted in a massive production of pro-inflammatory cytokines such as IL-2, IL-4, IL-6 and GM-CSF as well as of arachidonic acid-derived cyclooxygenase (COX)-mediated pro-inflammatory prostaglandins (PGs) and thromboxanes (TXs), hallmarks of strong MC activation. Collectively, these data show that co-sensing of ATP and IL-33 results in hyperactivation of MCs, which resembles to MC activation induced by IgE-mediated crosslinking of the FcεRI. Therefore, the IL-33/IL-33R and/or the ATP/P2X7 signalling axis are attractive targets for therapeutical intervention of diseases associated with the loss of integrity of cellular barriers such as allergic and infectious respiratory reactions.


Subject(s)
Adenosine Triphosphate/metabolism , Hypersensitivity/immunology , Interleukin-33/metabolism , Mast Cells/immunology , Animals , Anti-Allergic Agents/pharmacology , Anti-Allergic Agents/therapeutic use , Cell Degranulation/drug effects , Cytokines/metabolism , Disease Models, Animal , Eicosanoids/metabolism , Humans , Hypersensitivity/drug therapy , Interleukin-1 Receptor-Like 1 Protein/antagonists & inhibitors , Interleukin-1 Receptor-Like 1 Protein/metabolism , Interleukin-33/antagonists & inhibitors , Lipidomics , Mast Cells/drug effects , Mast Cells/metabolism , Mice , Mice, Knockout , NFATC Transcription Factors/genetics , Primary Cell Culture , Receptors, Purinergic P2X7/metabolism , Signal Transduction/drug effects , Signal Transduction/immunology
16.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Article in English | MEDLINE | ID: covidwho-1450313

ABSTRACT

Cancer therapy reduces tumor burden via tumor cell death ("debris"), which can accelerate tumor progression via the failure of inflammation resolution. Thus, there is an urgent need to develop treatment modalities that stimulate the clearance or resolution of inflammation-associated debris. Here, we demonstrate that chemotherapy-generated debris stimulates metastasis by up-regulating soluble epoxide hydrolase (sEH) and the prostaglandin E2 receptor 4 (EP4). Therapy-induced tumor cell debris triggers a storm of proinflammatory and proangiogenic eicosanoid-driven cytokines. Thus, targeting a single eicosanoid or cytokine is unlikely to prevent chemotherapy-induced metastasis. Pharmacological abrogation of both sEH and EP4 eicosanoid pathways prevents hepato-pancreatic tumor growth and liver metastasis by promoting macrophage phagocytosis of debris and counterregulating a protumorigenic eicosanoid and cytokine storm. Therefore, stimulating the clearance of tumor cell debris via combined sEH and EP4 inhibition is an approach to prevent debris-stimulated metastasis and tumor growth.


Subject(s)
Eicosanoids/metabolism , Epoxide Hydrolases/biosynthesis , Macrophages/immunology , Neoplasm Metastasis/pathology , Receptors, Prostaglandin E, EP4 Subtype/biosynthesis , Animals , Antineoplastic Agents/adverse effects , Antineoplastic Agents/therapeutic use , Carcinoma, Hepatocellular/pathology , Cell Death/drug effects , Cell Line, Tumor , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/prevention & control , Cytokines/metabolism , Hep G2 Cells , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Male , Mice , Mice, Inbred C57BL , Neoplasm Metastasis/prevention & control , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Phagocytosis/immunology , RAW 264.7 Cells
17.
J Lipid Res ; 62: 100129, 2021.
Article in English | MEDLINE | ID: covidwho-1440205

ABSTRACT

The significant morbidity and mortality associated with severe acute respiratory syndrome coronavirus 2 infection has underscored the need for novel antiviral strategies. Lipids play essential roles in the viral life cycle. The lipid composition of cell membranes can influence viral entry by mediating fusion or affecting receptor conformation. Upon infection, viruses can reprogram cellular metabolism to remodel lipid membranes and fuel the production of new virions. Furthermore, several classes of lipid mediators, including eicosanoids and sphingolipids, can regulate the host immune response to viral infection. Here, we summarize the existing literature on the mechanisms through which these lipid mediators may regulate viral burden in COVID-19. Furthermore, we define the gaps in knowledge and identify the core areas in which lipids offer therapeutic promise for severe acute respiratory syndrome coronavirus 2.


Subject(s)
COVID-19/immunology , Cell Membrane/immunology , Eicosanoids/immunology , SARS-CoV-2/physiology , Sphingolipids/immunology , Virus Replication/immunology , Humans
18.
Clin Chem Lab Med ; 59(12): 1891-1905, 2021 11 25.
Article in English | MEDLINE | ID: covidwho-1334799

ABSTRACT

Human Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) infection activates a complex interaction host/virus, leading to the reprogramming of the host metabolism aimed at the energy supply for viral replication. Alterations of the host metabolic homeostasis strongly influence the immune response to SARS-CoV-2, forming the basis of a wide range of outcomes, from the asymptomatic infection to the onset of COVID-19 and up to life-threatening acute respiratory distress syndrome, vascular dysfunction, multiple organ failure, and death. Deciphering the molecular mechanisms associated with the individual susceptibility to SARS-CoV-2 infection calls for a system biology approach; this strategy can address multiple goals, including which patients will respond effectively to the therapeutic treatment. The power of metabolomics lies in the ability to recognize endogenous and exogenous metabolites within a biological sample, measuring their concentration, and identifying perturbations of biochemical pathways associated with qualitative and quantitative metabolic changes. Over the last year, a limited number of metabolomics- and lipidomics-based clinical studies in COVID-19 patients have been published and are discussed in this review. Remarkable alterations in the lipid and amino acid metabolism depict the molecular phenotype of subjects infected by SARS-CoV-2; notably, structural and functional data on the lipids-virus interaction may open new perspectives on targeted therapeutic interventions. Several limitations affect most metabolomics-based studies, slowing the routine application of metabolomics. However, moving metabolomics from bench to bedside cannot imply the mere determination of a given metabolite panel; rather, slotting metabolomics into clinical practice requires the conversion of metabolic patient-specific data into actionable clinical applications.


Subject(s)
COVID-19/pathology , Metabolomics/methods , Amino Acids/analysis , Amino Acids/metabolism , COVID-19/epidemiology , COVID-19/virology , Cytokines/analysis , Eicosanoids/blood , Humans , Lipids/blood , Pandemics , Phenylalanine/analysis , Phenylalanine/metabolism , SARS-CoV-2/isolation & purification
19.
J Allergy Clin Immunol ; 148(2): 368-380.e3, 2021 08.
Article in English | MEDLINE | ID: covidwho-1260767

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can lead to a variety of clinical outcomes, ranging from the absence of symptoms to severe acute respiratory disease and ultimately death. A feature of patients with severe coronavirus disease 2019 (COVID-19) is the abundance of inflammatory cytokines in the blood. Elevated levels of cytokines are predictive of infection severity and clinical outcome. In contrast, studies aimed at defining the driving forces behind the inflammation in lungs of subjects with severe COVID-19 remain scarce. OBJECTIVE: Our aim was to analyze and compare the plasma and bronchoalveolar lavage (BAL) fluids of patients with severe COVID-19 (n = 45) for the presence of cytokines and lipid mediators of inflammation (LMIs). METHODS: Cytokines were measured by using Luminex multiplex assay, and LMIs were measured by using liquid chromatography-tandem mass spectrometry. RESULTS: We revealed high concentrations of numerous cytokines, chemokines, and LMIs in the BAL fluid of patients with severe COVID-19. Of the 13 most abundant mediators in BAL fluid, 11 were chemokines, with CXCL1 and CXCL8 being 200 times more abundant than IL-6 and TNF-α. Eicosanoid levels were also elevated in the lungs of subjects with severe COVID-19. Consistent with the presence chemotactic molecules, BAL fluid samples were enriched for neutrophils, lymphocytes, and eosinophils. Inflammatory cytokines and LMIs in plasma showed limited correlations with those present in BAL fluid, arguing that circulating inflammatory molecules may not be a reliable proxy of the inflammation occurring in the lungs of patients with severe COVID-19. CONCLUSIONS: Our findings indicate that hyperinflammation of the lungs of patients with severe COVID-19 is fueled by excessive production of chemokines and eicosanoids. Therapeutic strategies to dampen inflammation in patients with COVID-19 should be tailored accordingly.


Subject(s)
COVID-19/immunology , Cytokines/immunology , Eicosanoids/immunology , Inflammation/immunology , Lung/immunology , SARS-CoV-2 , Adult , Aged , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , COVID-19/blood , Cytokines/blood , Female , Humans , Inflammation/blood , Lung/cytology , Lymphocytes/immunology , Male , Middle Aged , Neutrophils/immunology , Severity of Illness Index
20.
Int J Mol Sci ; 22(9)2021 Apr 21.
Article in English | MEDLINE | ID: covidwho-1231491

ABSTRACT

Eosinophils are important effector cells involved in allergic inflammation. When stimulated, eosinophils release a variety of mediators initiating, propagating, and maintaining local inflammation. Both, the activity and concentration of secreted and cytosolic phospholipases (PLAs) are increased in allergic inflammation, promoting the cleavage of phospholipids and thus the production of reactive lipid mediators. Eosinophils express high levels of secreted phospholipase A2 compared to other leukocytes, indicating their direct involvement in the production of lipid mediators during allergic inflammation. On the other side, eosinophils have also been recognized as crucial mediators with regulatory and homeostatic roles in local immunity and repair. Thus, targeting the complex network of lipid mediators offer a unique opportunity to target the over-activation and 'pro-inflammatory' phenotype of eosinophils without compromising the survival and functions of tissue-resident and homeostatic eosinophils. Here we provide a comprehensive overview of the critical role of phospholipase-derived lipid mediators in modulating eosinophil activity in health and disease. We focus on lysophospholipids, polyunsaturated fatty acids, and eicosanoids with exciting new perspectives for future drug development.


Subject(s)
Eicosanoids/metabolism , Eosinophils/immunology , Fatty Acids, Unsaturated/metabolism , Lysophospholipids/metabolism , Phospholipases/metabolism , Animals , Eosinophils/metabolism , Eosinophils/pathology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL